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1 Challenge design

1.1 Setup size and geometry
A

B

C

Figure 1: We categorize existing
setups by the ratios of the reflector
(A), distance to the object (B) and
the size of the object(C).

Our setup uses arbitrary units, but nevertheless we have to
decide on the proportions of the individual parts. As the
setups in the previously published work vary greatly (see
Table 1), we focused on three main quantities: The size
of the reflector, the distance between object and reflector
and the size of the object itself (see Figure 1).

We chose the size of our setup (shown in Figure 3 in
the paper) by taking the geometric mean of the individu-
al values and applied some manual adjustment (e.g., par-
ticularly difficult proportions were weighted less, if the
reported results on them are inferior to the average).

Other interesting quantities of setups are its temporal
resolution T , as well as the number and distribution of
directly visible scene locations that are illuminated (Ni) and observed (No) over the course
of the measurement routine. They are also shown in Table 1. We oriented our temporal
resolution towards the resolution of streak cameras [12], as they offer the highest resolution
and use a single illumination point with a regular grid of observation points.

Table 1: Key specifications for various setups reported in literature: temporal resolution T (histogram
bin size or point spread function, whichever is greater); numbers of observed (No) and illuminated (Ni)
locations; scene dimensions A, B and C as illustrated in Figure 1; and ratios of these dimensions. All
values are approximate; those in parentheses have been estimated by authors of this paper from infor-
mation provided in the respective works. Entries marked AMCW or ∞ denote amplitude modulated
correlation sensors and steady-state intensity imagers, respectively.

Ref. T [ps] No Ni A [cm] B [cm] C [cm] A/B B/C
[7] 250 1 1 (2.5) (4.3) (3) 0.6 1.4
[9] 1.6 (672×512) > 1 25 (15) (1–1.5) 1.6 12
[12] 15 672 > 1 40×25 25 1.5×8.2 1.4 5
[5] AMCW 160×120 1 200 150 (80) 1.3 1.8
[2] 30 1 185 100×80 150 40 0.6 3.8
[6] AMCW 176×144 1 200×100 100 4 1.5 25
[8] ∞ 320×240 1 130 (60) 80×30 2.1 1.2
[4] 110 32×32 1 15×30 45 30×10 0.5 2.6
[3] 64 3 1 30 50 15×15 0.6 3.3
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2 Datasets
All datasets are rendered using the scene arrangement illustrated in Figure 3 in the main
paper. Data is provided as transient images I(u,v,τ), where the image coordinates (u,v) ∈
[0,1, . . . ,255]2 address square-shaped wall elements (“pixels”) of size 0.0022 in the X-Z
plane, and the τ dimension is discretized in 1600 bins of size dτ = 0.001 starting at τ = 0
(τ is a measure of the path length and must be divided by the speed of light to retrieve the
travel time). The exchange format for transient images is specified in Section 4. Extents and
discretization of the temporal dimension are specified within each dataset.

The datasets are available for download at our website https://nlos.cs.uni-bonn.
de/.

2.1 Geometry reconstruction
We consider geometry reconstruction the most important challenge, as it is not only the
focus of most of the previous work, but also the most general problem with the highest
number of degrees of freedom. In most scenarios, once a full geometric scene model has
been reconstructed, derivative information such as object positions or classes can be obtained
more easily from 3D geometry than from from raw transient images.

We split our test scenes into several categories that test different capabilities of solvers.
Each scene contains a single object which has to be reconstructed. We define five categories
of objects:

Cat. 1 2D shapes. This category contains two-dimensional objects of a certain thickness
perpendicular to the wall. This category is closely related to the texture reconstruc-
tion challenge (Section 2.4).

Cat. 2 Simple geometric shapes. Objects with simple mathematical descriptions without
additional surface details.

Cat. 3 Simple objects. Everyday objects from the real world, with limited geometric detail.
Objects in this category are not easily approximated by the shapes of the previous
category.

Cat. 4 Complex objects. Highly non-convex objects with complex shape but without fine
surface details.

Cat. 5 Difficult objects. Objects with thin elements, fine structures and complex topology
(e.g. many holes).

A full listing of datasets is given in Table 2. To facilitate the development and refinement
of reconstruction techniques, ground truth geometry in .obj format is provided for some of
the datasets; for all others, the true geometry remains unknown.

2.2 Position and orientation tracking
For tracking, three different rigid objects are used: a sphere, a golem figurine and an airplane
(see Table 3). For each object, there are a total of four challenges:

1. movement along the three main axes without rotation,

https://nlos.cs.uni-bonn.de/
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Table 2: Objects and their categories for the geometry reconstruction challenge.

Category Dataset name Material Ground truth provided
1 LetterK diffuse yes
1 LetterQ diffuse no
2 Box diffuse yes
2 Cone diffuse no
3 StanfordBunny diffuse yes
3 UtahTeapot diffuse yes
3 Ax diffuse no
3 Hammer diffuse no
3 Cup specular no
4 StanfordDragon specular yes
4 Dinosaur diffuse no
4 FlyingDragon diffuse no
4 IndoorPlant diffuse no
5 Chair diffuse no
5 Bike specular no
5 Greenhouse specular no

2. rotation at a fixed position along the three main axes,

3. movement along a complex path with constant orientation and

4. movement along a complex path while changing orientation.

Due to its symmetry, the challenges involving rotations are not included for the sphere
dataset. The paths are different for each object and challenge, e.g. the golem moves along
one path with constant orientation and along another path for the combined orientation and
translation.

The object origins lie in the center of mass for each object. This way, the object position
is uniquely defined for an ideal reconstruction of the scene, however we do expect a certain
bias in the position in realistic scenarios. Therefore we consider the residual RMS to be the
most important metric.

Each path forms a loop and contains 40 frames. The axes movement and static rotation
consist of 30 frames, with 10 frames for each axis. The movements and rotations around the
axes are designed to be easy to reconstruct and to make systematic errors and missed frames
obvious.

The exact geometry of the golem is given as an .obj file and can be used to improve the
reconstruction (e.g., by fitting it into a partial geometric reconstruction of each frame). The
shape of the airplane is not revealed to test tracking of unknown objects.

2.3 Object classification
The goal of the object classification task is to assign the transient image to one of eleven
object geometries, as listed in Table 4 and shown in Figure 4a in the main paper. All object
shapes are given as .obj files and should be used to perform the classification.

The objects were scaled to equal surface area to prevent classifying by the size of the
object, i.e. amount of reflected light. However, this approach is not necessarily perfect as
very compact or concave objects appear smaller when scaled by their surface area.



A QUANTITATIVE PLATFORM FOR NLOS IMAGING PROBLEMS: SUPPLEMENT 5

Table 3: Overview of the object tracking datasets.

Dataset name Material Shape known Position Rotation
SphereAxesPos diffuse yes yes no
SpherePathPos diffuse yes yes no
GolemAxesPos diffuse yes yes no
GolemAxesRot diffuse yes no yes
GolemPathPos diffuse yes yes no
GolemPathRot diffuse yes yes yes
AirplaneAxesPos specular no yes no
AirplaneAxesRot specular no no yes
AirplanePathPos specular no yes no
AirplanePathRot specular no yes yes

Table 4: Overview of the object classification dataset.

Dataset name Material
Cat diffuse
Icosphere diffuse
LetterG diffuse
Parallelepiped diffuse
Plant diffuse
SpoonDiffuse diffuse
Whale diffuse
Gramophone specular
Headphones specular
Pan specular
SpoonSpecular specular

2.4 Planar textures
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T

Figure 2: Texture reconstruc-
tion setup.

In this challenge, a textured planar target of extent (x,z) ∈
[−0.1,0.1]2 placed in front of the laser spot at y = −0.3 (see
Figure 2) is the subject of the reconstruction. The texture,
represented by a grayscale image of dimension n× n, modu-
lates the albedo (diffuse reflectance) of the surface. Each val-
ue ρs,t within the texture covers a square-shape region of size
(0.2/n,0.2/n) with a value in the range of [0,1]. We provide a
variety of datasets that feature black-and-white and grayscale
textures of different resolution (Table 5).

For the evaluation, results with arbitrary resolutions are
supported. If the reconstruction T ′ has the same resolution as
the reference, identical decomposition steps can be applied.
Otherwise it is scaled to the closest power of 2 before decom-
posing it. If the pyramid of the reconstruction contains more
layers (i.e. it had a higher input resolution), the highest layers
are discarded; if it contains fewer layers, the missing ones are filled with zeros (as it did
not contain any information about the higher frequencies). Therefore, reconstructions in the
reference solution are preferred.
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Table 5: Overview of the texture reconstruction datasets.

Dataset name Resolution Pixel depth
Character 4×4 {0,1}
Digit 4×4 {0,1}
Letter 4×4 {0,1}
Smiley 4×4 {0,1}
House 16×16 {0,0.25,0.5,0.75,1}
Number 16×16 {0,0.25,0.5,0.75,1}
Pattern 16×16 {0,0.25,0.5,0.75,1}
Text 16×16 {0,0.25,0.5,0.75,1}
Books 128×128 [0,1]
Concert 128×128 [0,1]
Fan 128×128 [0,1]
Industrial 128×128 [0,1]

3 Rendering
We used a modified version of pbrt-v3[11] to render the transient images.

3.1 Importance sampling
The transient images of our scenes contain only light from indirect reflections, which can
make the rendering very inefficient if no special care is taken. Sampling from the wall
towards the light source is futile, as the laser spot illuminates only the object, not the wall.
Sampling the hemisphere over the wall is inefficient, as most objects of interest only cover a
small solid angle on the hemisphere and are thus unlikely to be hit.

To improve the performance for this light transport scenario, we implemented a custom
importance sampling that is heavily inspired from the area light source sampling already
implemented in pbrt-v3. The triangles of the object are stored in a special list and both
the wall and the object triangle are tagged with specific flags. During path tracing, everytime
a ray hits the wall, we can sample directly into the direction of the object, as the wall can
only receive light that was reflected from the object. These samples need to be normalized
by considering the area, angle and distance of the triangle of the object to ensure the correct
expected value of the sampling.

Our tests show that this custom importance sampling is two to three orders of magnitude
more efficient than naive sampling. Physical correctness is preserved by only eliminating
zero-radiance paths, e.g. interreflections on the object surface remain untouched by this
optimization.

4 Transient image files
As of writing this paper, there is no standard format for storing transient images. It would
seem like an canonical and attractive choice to resort to standard image formats for which
suitable I/O libraries exist; however, such files would have to be accompanied by separate
metadata specific to the dataset, and most image formats rigidly adhere to a Cartesian pix-
el arrangement. Custom formats have also been proposed, for example Arellano et al.’s
.float and .lasers files [1], a format that would require thousands of individual files
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to store a single dataset from our database, and in its current form is not expressive enough
to cover new capture geometries such as O’Toole et al.’s confocal setting [10]. We therefore
propose a new format that is compact (one file per dataset), easy to read and write, and at
the same time flexible enough to cater to the needs of emerging research directions. Here we
give a high-level overview over the file format. A detailed implementation guide comes as
part of the SDK.

A transient image file consists of 4 blocks: The file header contains general information
and the sizes of each remaining block. The pixel data block contains a linear array of tran-
sient pixels. The pixel interpretation block is an efficient representation of the illumination
and observation points of each pixel. Finally, the image properties block contains arbitrary,
JSON-encoded meta-data of the image.

For the pixel interpretation and image properties blocks we made some noteworthy de-
sign choices, which we will discuss in the following.

4.1 Pixel interpretation block

Traditionally, a single point on the reflector is illuminated while a regular grid of points on
the reflector is observed. Due to the reciprocity of the light transport, this can be reversed,
e.g. as done by Buttafava et al. [2]. In general, multiple illumination and observation points
can be used (which may or may not be arranged in a regular grid), and in the extreme case
of [10], a unique illumination and observation point is used for every pixel.

To support all these cases and still have an efficient representation of our data, the obser-
vation and illumination points can be stored in different modes. Mode 0 is the most general
one and requires no structure in the observation or illumination points. They are stored for
every pixel individually, however this introduces a certain overhead (which becomes ne-
glectible, if each pixel consists of a large number of bins). The SDK provides an upconverter
to Mode 0 from the other, more specialized ones.

Mode 1 assumes a single illumination point and a regular grid of observation points, thus
the transient image has a meaningful x and y resolution. Observation point positions are
implicitly stored by the grid properties and their position in the linear pixel data array (as
it is the case in raster graphic formats). Mode 2 is the reciprocal case, where the roles of
observation and illumination points are reversed.

4.2 Image properties block

Image meta-data is widely used to store additional information such as the camera settings
used to capture the image. In Transient image files they are stored as an UTF-8 encoded
JSON string at the very end of the file. A number of standard fields are specified, however
users are free to add their own ones.

This approach has multiple advantages: Meta-data can be read and written using a
binary-compatible text editor, all fields are optional, new properties can easily be added,
and readers and writers are quick to implement due to the wide availability of JSON en-
/decoders.

Citation
Citation
{OT1	extquoteright Toole, Lindell, and Wetzstein} 2018

Citation
Citation
{Buttafava, Zeman, Tosi, Eliceiri, and Velten} 2015

Citation
Citation
{OT1	extquoteright Toole, Lindell, and Wetzstein} 2018



8 A QUANTITATIVE PLATFORM FOR NLOS IMAGING PROBLEMS: SUPPLEMENT

R

G

(a) Top to bottom: d (R,G) (b) Bottom to top: d (G,R)

Figure 3: Illustration of the correspondence selection for our surface comparison metric. For each
triangle of the source, the closest triangle of the target is selected. The lower object is the ground-truth
geometry G, while the upper object is the reconstruction R.

Table 6: Asymmetric reconstruction errors between a fast backprojection reconstruction (M1), a ground
truth mesh (M2) and the same mesh after one level of Catmull-Clark subdivision (M3). In boldface, the
distance d (G,R) from ground truth to a test geometry measures the incompleteness of the reconstruct-
ed surface. As intended by design, this distance measure is significantly less sensitive to remeshing
(third row) than it is to actual missing geometry (first and second rows).

Comparison d (R,G) d (G,R)

R= M1, G = M2 5.255 ·10−3 1.819 ·10−2

R= M1, G = M3 5.132 ·10−3 1.813 ·10−2

R= M3, G = M2 4.729 ·10−4 6.438 ·10−5

5 Comparison metrics
Figure 3 shows how the closest points are selected during the evaluation of the asymmetric
mesh-to-mesh distance (Equation 2 in the main paper). The reconstruction R (top) misses
the right third of the surface that is known to exist in the ground-truth mesh G (bottom), and it
has a finer tessellation in the middle segment. In the distance from reconstruction to ground
truth, this results in more connections in the middle segment, compared to the left segment.
Some of these connections are shorter and some are longer, but their average is roughly the
same as in the case of equal tessellation. As they are weighted by the triangle area, the
total cost for the middle part does not increase significantly by the additional connections.
Overall, the cost is quite similar to the leftmost geometry segment.

The right part of G is missing in R. In the distance from original to reconstruction
(d (G,R)), this results in longer connections and thus in increased cost.

Additionally, the misalignment of the meshes increases the length of all connections and
thus the overall distance.

The tessellation of an object does have a certain influence on the comparison result;
however, it is small. To avoid bias from tesselation, all used models are tessellated finer
than the maximal expected reconstruction resolution. Furthermore, trivial subdivision of the
triangles can further reduce this bias if needed and does not require to render or reconstruct
the scenes again.

In Table 6, we compare the reconstruction error introduced by a change in tessellation to
that of a state-of-the-art reconstruction.
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Wall

Laser

Triangle

Figure 4: Culling of backfaces. Triangles that are facing away from the laser spot (x,y,z) = (0,0,0) are
removed from the comparison. All others are kept, even those whose normal vector points in positive
z direction (away from the wall).

Table 7: Fast Backprojection Reconstruction Results. a) Geometry reconstruction: The greater number
of the two (marked in bold) is the symmetric distance of reference and reconstruction (Equation 2 in the
main paper). b) Position tracking: Columns from left to right: RMS distance (Equation 3 in the main
paper), offset length, RMS residual after subtraction of offset, completeness of trajectory (percentage
of recovered frames).

(a)
Scene d (R,G) d (G,R)

Axe 0.00376 0.00645
Bike 0.00675 0.00916
Chair 0.00429 0.0137
Cone 0.0129 0.00867
Cube 0.0743 0.00686
Cup 0.00809 0.0283
Dino 0.00500 0.0172

Dragon 0.0128 0.00453
Greenhouse 0.0133 0.0200

Hammer 0.0108 0.00876
IndoorPlant 0.00438 0.0162

K-Letter 0.0200 0.00734
Q-Letter 0.00625 0.00631

StanfordBunny 0.00356 0.0155
StanfordDragon 0.00359 0.0202

UtahTeapot 0.00341 0.0362

(b)
Scene RMS dist. ‖Offset‖ RMS res. Compl. [%]

Golem Axes 0.0238 0.0216 0.0101 100
Golem Path 0.0685 0.025 0.0638 100
Sphere Axes 0.0488 0.0485 0.0056 100
Sphere Path 0.0535 0.0504 0.018 100
Plane Axes 0.0269 0.0127 0.0237 100
Plane Path 0.05 0.0167 0.0472 100

5.1 Backface culling

Under normal conditions, it cannot be expected that the backside of an object can be well
reconstructed, as usually little to no information will reach the wall. Therefore triangles
facing away from the reflector are discarded before the mesh distance is evaluated.

Figure 4 shows an example of a triangle that is pointing away from the reflector but still
visible from the laser spot. We use this visibility of the laser spot as a culling criterion, in-
stead of only checking whether the face normal is pointing away from the reflector. This is
still not always correct, as global illumination can also allow light from culled triangles to
reach the reflector (and likewise, triangles facing towards the reflector can be completely oc-
cluded), but taking all of these effects into account is not possible in a simple and transparent
manner.

6 Tools
We provide a variety of tools for handling the transient images. At the core are loaders and
writers for various programming languages including C++, Python and Matlab. Together
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(a) Time slices (b) Histogram

Figure 5: Our viewer shows time slices and histograms of transient images.
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0/63 63/63
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Figure 6: The camera converter uses a homography defined by four points pairs to resample a transient
image.

with the file format description, they should allow a quick integration of our datasets in other
frameworks. The tools can be found at our website https://nlos.cs.uni-bonn.
de/.

6.1 Image viewer

We provide a simple viewer for transient images based on Python and Matplotlib. The user
can scroll through time and adjust the intensity scale. A second view shows the transient
image integrated over the spatial domain. The resulting histogram illustrates how much light
arrived at what time, on either a linear and logarithmic scale. The viewer is shown in Figure
5.

6.2 Setup converter

Many setups seen in the real world have different illumination and viewing geometries.
While a change in laser spot position would require re-rendering the scene, other camera
placings and projections can be accommodated to make results more comparable. To this
end, we offer a resampling tool to convert transient images to different camera positions.

At the heart of the resampling is a homography as depicted in Figure 6. The user defines

https://nlos.cs.uni-bonn.de/
https://nlos.cs.uni-bonn.de/
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Figure 7: Transient image of the Hammer scene before (left) and after (right) applying the noise model
SPAD.
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Figure 8: Synthetic AMCW measurements of the Hammer scene. Left: Measured demodulation func-
tions from a PMDTec CamBoard nano AMCW camera. Middle/Right: The two phase images (0◦ and
90◦) computed using the sensor model.

the four point pairs in the old and new image from which the homography is computed. Ap-
plying it to the image jointly crops, transforms and rescales the image. The user can also
specify a camera and laser position as three-dimensional coordinates which are used to com-
pute a temporal offset for each output pixel. Additional, the temporal window of the output
image can be changed. For the resampling, a Mitchell-Netravali filter with customizable size
for both spatial and temporal filtering is used. If no size is specified, reasonable filter sizes
are computed from the homography.

The tool is written in C++ with no external dependencies. It is implemented as command
line tool and thus ready for integration in batch processing.

6.3 Fast backprojection integration

All scripts that were used to export the transient images to the fast backprojection solver by
Arellano et al. [1] are available on our website. This allows the user to set up a complete
reconstruction pipeline and re-evaluate all results in the paper.

6.4 Sensor models / noise

The suite of scripts and tools contains two noisy sensor models to reflect the character-
istic behavior of two important types of device: AMCW, a simple model of a correlation
ToF sensor (4-tap near-sinusoidally modulated correlation time-of-flight measurement with
Skellam-distributed shot noise) and SPAD, a single-photon counter with Poisson-distributed
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Figure 9: Reconstruction of the Stanford Dragon. The ground truth geometry is shown in blue, while
the reconstructed geometry is green.

shot noise and dark counts. Figure 7 shows an example dataset before and after applying
the SPAD model with standard settings. Figure 8 shows images for the same scene as seen
through the AMCW sensor model.

7 Reconstruction results
Our evaluation metrics aim to make different reconstruction algorithms comparable by re-
ducing their overall performance to a single number (that are shown in Table 7). However,
these error terms arise from various characteristics of the algorithm which are interesting to
study, as they increase the understanding of the behavior and point at possible improvements.
Thus we now discuss some characteristics of the backprojection example used in the paper.
It should be noted that we did not tune parameters to achieve the highest possible accuracy.
Instead, these examples serve to illustrate the typical behavior of a reconstruction algorithm.

7.1 Geometry reconstruction
Figure 9 shows the reconstruction of the Stanford Dragon model. The reconstruction mainly
consists of planar patches that are parallel to the wall which is very typical and seen in
almost all reconstructions. The Laplacian filter used after backprojection to isolate surfaces
that favors flat structures and thus struggles with surfaces that are curved or not aligned with
the wall. The resulting reconstructions are often incomplete, low in detail, and they feature
a distinctive “cloud-of-pancakes” look.

7.2 Position tracking
Our naive tracking position implementation reconstructs first the object geometry and then
uses its center of mass as object position. Thus it is very vulnerable to incomplete geometry
reconstructions.

Figure 10 shows two frames of the AirplaneAxesPos dataset, where the plane moves
along the X axis. Both reconstructions are incomplete and favor geometry close to the laser
spot, which lies in between both positions. When the center of masses are computed, the
movement of the object thus appears to be smaller than it actually is (see Figure 11). A more
sophisticated algorithm could be aware of this shortcoming and try to fit the given object
geometry into its reconstruction to determine which part of the plane was reconstructed.
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Figure 10: Reconstructed geometry as it is used during position tracking. The ground truth geometry
is shown in blue, while the reconstructed geometry is green. In different frames, different parts of the
plane were reconstructed, resulting in an error in the position reconstruction.

x

z

original
reconstructed

Figure 11: Reconstructed trajectory of the airplane for the movement along the X axis. Apart from the
offset in Z direction, the reconstructed path is too short.
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